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Abstract—This paper is devoted to a classical NP-hard problem, known as the three-index axial
assignment problem. Within the corresponding framework, the problem of combining feasible
solutions is posed as an assignment problem on the set of solutions containing only the com-
ponents of selected feasible solutions. The issues of combining solutions for the multicriteria
problem with different criteria convolutions are studied. In the general case, the combina-
tion problem turns out to be NP-hard. Polynomial solvability conditions are obtained for the
combination problem.
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1. INTRODUCTION

There is a wide class of applied problems formalized by multi-index axial assignment prob-
lems [1–4]. In the general case (no additional constraints), the class of multi-index axial assign-
ment problems is NP-hard [5]. Particular polynomially solvable subclasses and subclasses with
polynomial approximation algorithms are known [1, 6, 7]. Axial assignment problems with a spe-
cial structure of the multi-index cost matrix were studied in [6–10]; the branch-and-bound method
for solving the axial assignment problem was described in [11]; a parallel implementation of the so-
lution algorithm was discussed in [12]; a genetic algorithm was developed in [13]; a lower bound for
the problem was considered in [14]; asymptotically optimal solutions were investigated in [15]. Mul-
ticriteria formulations of multi-index assignment problems were addressed in [16–19]. The problem
of combining solutions of the axial assignment problem was investigated in [20–22].

This paper is devoted to the multicriteria three-index axial assignment problem. Within the
corresponding framework, we formulate the problem of combining feasible solutions as a multicri-
teria assignment problem on the set of solutions obtained by combining the components of given
feasible solutions. The convolution of criteria is considered as a compromise scheme for solving
multicriteria problems. We consider linear, minimax, and lexicographic convolutions.

For these types of convolutions, the problems of combining N feasible solutions are studied. The
following results are established below:

—In the linear convolution case, the combination problem is polynomially solvable for N = 2
and NP-hard for N � 4.

—In the lexicographic convolution case, the combination problem is polynomially solvable for
N = 2 and NP-hard for N � 4.

—In the minimax convolution case, the combination problem is NP-hard for N � 2.
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810 AFRAIMOVICH, EMELIN

This research continues the series of papers [20–22], where combination was studied when solving
the (single-criterion) axial assignment problem. Here, combining solutions means constructing
a solution that contains only assignments from selected feasible solutions. In turn, solving the
combination problem involves searching for an optimal solution, in terms of a selected criterion or
compromise scheme, on the set of solutions obtained by combining the selected feasible solutions.

Note that the original multicriteria three-index axial assignment problem with the considered
types of convolutions as a compromise scheme is NP-hard. Thus, the combination algorithms
proposed below for the polynomially solvable cases can be applied as a complement to heuristic or
approximate algorithms for solving the original NP-hard problems. Many heuristic or approximate
algorithms for solving assignment problems are based on constructing a series of feasible solutions
with further record selection among them; for example, see [1, 3, 6]. As an alternative to the
conventional approach of selecting a record among the feasible solutions found, we use a step of
combining the constructed feasible solutions. In this case, the solution obtained by combination
is surely not worse than the record in terms of the optimization criterion: the resulting set of
combination-based solutions also contains all feasible solutions found initially.

The remainder of the paper is organized as follows. Section 2 presents the formal statement of the
multicriteria three-index axial assignment problem and describes the types of criteria convolutions
used. In Section 3, the problem of combining feasible solutions is posed. In Sections 4, 5, and 6, we
investigate combination problems for the linear, lexicographic, and minimax criteria convolutions,
respectively. Section 7 provides the results of computational experiments.

2. THE MULTICRITERIA THREE-INDEX AXIAL ASSIGNMENT PROBLEM

Let I, J, and K be disjoint index sets, I ∩ J = ∅, I ∩K = ∅, J ∩K = ∅, and |I| = |J | = |K| = n;
M is a fixed number of problem criteria; cuijk, where i ∈ I, j ∈ J, k ∈ K, and u = 1,M, are three-
index cost matrices; xijk, where i ∈ I, j ∈ J, and k ∈ K, is the three-index matrix of the variables.
Then the multicriteria three-index axial assignment problem is formulated as the following integer
linear programming problem: ∑

i∈I

∑
j∈J

xijk = 1, k ∈ K, (1)

∑
i∈I

∑
k∈K

xijk = 1, j ∈ J, (2)

∑
j∈J

∑
k∈K

xijk = 1, i ∈ I, (3)

xijk ∈ {0, 1}, i ∈ I, j ∈ J, k ∈ K, (4)∑
i∈I

∑
j∈J

∑
k∈K

cuijkxijk → min, u = 1,M. (5)

For the sake of convenience, let ZM denote the multicriteria problem (1)–(5). As is known, in
the single-criterion formulation (for M = 1), the assignment problem ZM is NP-hard [5].

In the multicriteria formulation, we will consider the convolution of criteria as a compromise
scheme. The linear, lexicographic, and minimax convolutions will be studied below.

Given weights αu, u = 1,M, the linear convolution of criteria has the form

M∑
u=1

αu
∑
i∈I

∑
j∈J

∑
k∈K

cuijkxijk → min . (6)
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CRITERIA CONVOLUTIONS WHEN COMBINING THE SOLUTIONS 811

For the sake of convenience, let ZL denote problem (1)–(4), (6). Obviously, the NP-hard (single-
criterion) three-index axial assignment problem is polynomially reducible to the problem ZL. In-
deed, consider the three-index axial assignment problem with a cost matrix cijk, where i ∈ I, j ∈ J,
and k ∈ K. In the corresponding problem ZL, we define c1ijk = cijk, c

u
ijk = 0, α1 = 1, αu = 0, where

i ∈ I, j ∈ J, k ∈ K, and u = 2,M. Then the following result is true.

Proposition 1. The problem ZL is NP-hard.

Assume that the order of significance of the criteria (5) coincides with their original indexing.
We introduce a preference relation on the set of feasible solutions of the assignment problem. Let
P denote the set of feasible solutions of the system of constraints (1)–(4). For x1, x2 ∈ P , we write
x1 � x2 if and only if there exists y ∈ {1, . . . ,M} such that∑

i∈I

∑
j∈J

∑
k∈K

cuijkx
1
ijk =

∑
i∈I

∑
j∈J

∑
k∈K

cuijkx
2
ijk, u ∈ {1, . . . , y}, (7)

∑
i∈I

∑
j∈J

∑
k∈K

cuijkx
1
ijk <

∑
i∈I

∑
j∈J

∑
k∈K

cuijkx
2
ijk, u ∈ {1, . . . ,M} ∩ {y + 1} (8)

(i.e., conditions (7) and (8) hold). As a result, the multicriteria problem with the lexicographic
convolution of criteria is to find x∗ satisfying the system of constraints

x∗ ∈ P, (9)

x∗ � x, x ∈ P. (10)

For the sake of convenience, let Z� denote problem (9), (10). Obviously, the NP-hard three-
index axial assignment problem is polynomially reducible to the problem Z�. In the corresponding
problem Z�, we define c1ijk = cijk and cuijk = 0, where i ∈ I, j ∈ J, k ∈ K, and u = 2,M. Then the
following result is true.

Proposition 2. The problem Z� is NP-hard.

The minimax convolution of criteria has the form

max
u∈{1,...,M}

⎛⎝∑
i∈I

∑
j∈J

∑
k∈K

cuijkxijk

⎞⎠→ min . (11)

For the sake of convenience, let Zminmax denote problem (1)–(4), (11). Obviously, the NP-hard
three-index axial assignment problem is polynomially reducible to the problem Zminmax. In the
corresponding problem Zminmax, we define cuijk = cijk, where i ∈ I, j ∈ J, k ∈ K, and u = 1,M.
Then the following result is true.

Proposition 3. The problem Zminmax is NP-hard.

Thus, the multicriteria axial assignment problem with the linear, lexicographical, or minimax
convolution of criteria as a compromise scheme is NP-hard. This raises the question of combining
feasible solutions as a complement to heuristic or approximate algorithms for solving these NP-hard
problems.

3. THE PROBLEM OF COMBINING SOLUTIONS

Let a given set W ⊆ I×J×K define a subset of allowed assignments. Consider problem (1)–(4),
(12), (5) with

xijk = 0, (i, j, k) /∈W. (12)
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812 AFRAIMOVICH, EMELIN

For the sake of convenience, let ZM (W ) denote the multicriteria problem (1)–(4), (12), (5) with
a given set W. Obviously, problem (1)–(5) corresponds to the problem ZM (I × J ×K).

Next, we consider the multicriteria problem ZM (W ) with different criteria convolutions as a
compromise scheme.

In the linear convolution case, the corresponding problem takes the form (1)–(4), (12), (6),
further denoted by ZL(W ).

In the lexicographic convolution case, the corresponding problem takes the form (9), (10), where
the set P is the set of feasible solutions for the system of constraints (1)–(4), (12). It will be denoted
by Z�(W ).

In the minimax convolution case, the corresponding problem takes the form (1)–(4), (12), (11),
further denoted by Zminmax(W ).

Checking the consistency of the system of constraints in the problem ZM (W ) with an arbitrary
set W, i.e., system (1)–(4), (12), is an NP-complete problem [1]. We will consider the sets W
corresponding to the assignments of a given subset of feasible solutions.

Let xijk, where i ∈ I, j ∈ J, and k ∈ K, be a feasible solution of the system of constraints (1)–(4).
Then W (x) will denote the following set of allowed assignments:

W (x) = {(i, j, k)|xijk = 1, i ∈ I, j ∈ J, k ∈ K}.

Let x1ijk, . . . , x
r
ijk, where i ∈ I, j ∈ J, and k ∈ K, be arbitrary r feasible solutions of the system of

constraints (1)–(4). Then

W (x1, . . . , xr) = W (x1) ∪ . . . ∪W (xr).

Below, we will investigate the problems

ZL(W (x1, . . . , xr)), Z�(W (x1, . . . , xr)), Zminmax(W (x1, . . . , xr)).

They are combination problems, i.e., optimization ones on the set of allowed assignments
W (x1, . . . , xr), which is built by combining the factual assignments of the selected feasible solutions
x1, . . . , xr. Thus, the solution of combination problems corresponds to the solution containing only
the assignments of the selected feasible solutions.

4. THE LINEAR CONVOLUTION OF CRITERIA

Consider the multicriteria assignment problem in the case of the linear convolution of criteria.
Obviously, the problem ZL(W (x1, . . . , xr)) is equivalent to the single-criterion three-index axial
problem with the cost matrix

cijk =
∑

u∈{1,...,M}
αuc

u
ijk, i ∈ I, j ∈ J, k ∈ K.

Thus, according to [20], the problem ZL(W (x1, x2)) is polynomially solvable. The combination
algorithm proposed in [20] requires O(n) computational operations and can be applied to solve the
problem ZL(W (x1, x2)). Based on [22], the following result is true.

Proposition 4. For r � 4, the class of problems ZL(W (x1, . . . , xr)) is NP-hard.

For the time being, the complexity status of the class of problems ZL(W (x1, x2, x3)) remains
unknown.
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CRITERIA CONVOLUTIONS WHEN COMBINING THE SOLUTIONS 813

5. THE LEXICOGRAPHIC CONVOLUTION OF CRITERIA

We present an algorithm for solving the multicriteria assignment problem in the case of the
lexicographic convolution of criteria when combining two feasible solutions.

Algorithm 1 (solution of the problem Z�(W (x1, x2))).

Step 1. Construct a graph G = (V,A), where

V = {I ∪ J ∪K}, A =
{

(i, j), (i, k), (j, k)|(i, j, k) ∈W (x1, x2)
}
.

Step 2. Find the connected components Vl, l = 1, q, of the graph G and construct the subgraphs
Gl = (Vl, Al), l = 1, q, generated by the corresponding connected components.

Step 3. Construct the sets

D1
l =

{
(i, j, k)|(i, j, k) ∈W (x1), (i, j), (i, k), (j, k) ∈ Al

}
, l = 1, q,

D2
l =

{
(i, j, k)|(i, j, k) ∈W (x2), (i, j), (i, k), (j, k) ∈ Al

}
, l = 1, q.

Step 4. Let

P 1
l =

⎧⎪⎨⎪⎩p|p = argmin
p∈{1,2}

∑
(i,j,k)∈Dp

l

c1ijk

⎫⎪⎬⎪⎭ ,

P ul =

⎧⎪⎨⎪⎩p|p = argmin
p∈Pu−1

l

∑
(i,j,k)∈Dp

l

cuijk

⎫⎪⎬⎪⎭ , u = 2,M − 1,

p∗l = argmin
p∈PM−1

l

∑
(i,j,k)∈Dp

l

cMijk, l = 1, q.

Step 5. Determine the solution of the problem Z�(W (x1, x2)) using the following algorithm.
Let x∗ijk := 0, where i ∈ I, j ∈ J, and k ∈ K. For each l = 1, q, execute

x∗ijk := 1, (i, j, k) ∈ D
p∗
l
l .

The value of the criteria (5) on a solution x∗ is given by

q∑
l=1

∑
(i,j,k)∈Dp∗

l
l

cuijk, u = 1,M.

Theorem 1. Algorithm 1 outputs the solution of the problem Z�(W (x1, x2)).

Proof. Assume on the contrary that the output of Algorithm 1 is not a solution of the problem
Z�(W (x1, x2)). Then there exists a feasible solution x of the problem Z�(W (x1, x2)) such that the
condition x∗ � x is false.

In each connected component Vl, l = 1, q, any feasible solution of the problem Z�(W (x1, x2))
may contain assignments consisting of triplets of only the first or only the second solution; see the
proof of [20, Theorem 1].

By the assumption above, there exists a connected component Vl in which the assignments of
the solution x do not coincide with the assignments of the solution x∗. Then we construct the
solution x′ as follows:
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Step 1. x0 = x, l = 1.

Step 2. xtijk =

⎧⎪⎪⎨⎪⎪⎩
1 if (i, j, k) ∈ D

p∗l
l

0 if (i, j, k) ∈ D
3−p∗l
l

xt−1
ijk otherwise,

i ∈ I, j ∈ J, k ∈ K,

Step 3. If l = q, then stop; otherwise, l = l + 1 and return to Step 2.

By the construction procedure, xl+1 � xl, l = 0, q − 1. In addition, xq = x∗ and x0 = x. Hence, we
arrive at the contradiction x∗ � x, and the proof of Theorem 1 is complete.

According to [20, Theorem 2], the following result is true.

Proposition 5. Algorithm 1 requires O(n) computational operations.

Obviously, the class of three-index axial problems with the set of allowed assignments
W (x1, x2, x3, x4) is polynomially reducible to the class of problems Z�(W (x1, x2, x3, x4)). As was
established in [22], the former class is NP-hard. Indeed, consider the three-index axial assignment
problem with the cost matrix cijk, where i ∈ I, j ∈ J, and k ∈ K. When performing reduction in
the corresponding problem Z�(W (x1, x2, x3, x4)), we define c1ijk = cijk and cuijk = 0, where i ∈ I,

j ∈ J, k ∈ K, and u = 2,M. Then the following result is true.

Proposition 6. For r � 4, the class of problems Z�(W (x1, . . . , xr)) is NP-hard.

For the time being, the complexity status of the class of problems Z�(W (x1, x2, x3)) remains
unknown.

6. THE MINIMAX CONVOLUTION OF CRITERIA

Consider the multicriteria assignment problem in the case of the minimax convolution of criteria.

Lemma 1. The optimization problem

x′i ∈ {0, 1}, i = 1, n, (13)

max

(
n∑
i=1

aix
′
i,

n∑
i=1

bi(1 − x′i)

)
→ min (14)

is NP-hard.

Proof. To prove this lemma, we polynomially reduce the classical NP-complete PARTITION
problem [5] to problem (13), (14). Consider the PARTITION problem with the initial parame-
ters wi, i = 1,m, letting n = m and ai = bi = wi, i = 1, n. The optimal value of the criterion of
problem (13), (14) is 1

2

∑m
i=1 wi if and only if the PARTITION problem has a solution. Therefore,

problem (13), (14) is NP-hard. The proof of Lemma 1 is complete.

Theorem 2. The class of problems Zminmax(W (x1, x2)) is NP-hard.

Proof. We show the polynomial reducibility of the NP-hard problem (13), (14) to the class of
problems Zminmax(W (x1, x2)).

Let N = 2n, I = J = K = {1, . . . , N}, and M = 2. We define the three-index cost matrices c1ijk
and c2ijk, where i ∈ I, j ∈ J, and k ∈ K, as follows:

c1ijk =

{
aq if ∃q ∈ {1, . . . , n} such that i = j = k = 2q − 1
0 otherwise,

i ∈ I, j ∈ J, k ∈ K,

c2ijk =

{
bq if ∃q ∈ {1, . . . , n} such that i = j = k + 1 = 2q
0 otherwise,

i ∈ I, j ∈ J, k ∈ K.
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CRITERIA CONVOLUTIONS WHEN COMBINING THE SOLUTIONS 815

We construct two subsets P1, P2 ⊆ I×J×K determining two feasible solutions of system (1)–(4):

P1 = {(i, i, i)|i = 1, N},
P2 = {(2i − 1, 2i − 1, 2i), (2i, 2i, 2i − 1)|i = 1, n}.

We define the corresponding two feasible solutions x1, x2 of system (1)–(4) by

xtijk =

{
1 if (i, j, k) ∈ Pt

0 otherwise,
i ∈ I, j ∈ J, k ∈ K, t ∈ {1, 2}.

Next, consider the corresponding combination problem Zminmax(W (x1, x2)). It is necessary to
demonstrate that the optimal value of the criterion of problem (13), (14) coincides with that of
problem Zminmax(W (x1, x2)).

1. Let x′∗ be the optimal solution of problem (13), (14). We construct P (x′∗) using the following
algorithm:

Step 1. P (x′∗) = ∅.
Step 2. For each i = 1, n :
if x′∗i = 1, then P (x′∗) = P (x′∗) ∪ {(2i − 1, 2i − 1, 2i − 1), (2i, 2i, 2i)};
otherwise, P (x′∗) = P (x′∗) ∪ {(2i − 1, 2i − 1, 2i), (2i, 2i, 2i − 1)}.

As is easily verified, the value of the criterion of the problem Zminmax(W (x1, x2)) on the solution
corresponding to P (x′∗) coincides with that of problem (13), (14). Assume on the contrary that the
solution corresponding to P (x′∗) is not optimal in the problem Zminmax(W (x1, x2)). Let x∗ be the
optimal solution of the problem Zminmax(W (x1, x2)). Then the value of the criterion of the problem
Zminmax(W (x1, x2)) on the solution x∗ is strictly smaller than that of problem (13), (14) on the
solution x′∗. Then we construct a feasible solution x′ of problem (13), (14) as follows:

x′i =

{
1 if x∗iii = 1

0 otherwise,
i = 1, n.

By the construction procedure, the value of the criterion of problem (13), (14) on the solution x′

coincides with that of the problem Zminmax(W (x1, x2)) on the solution x∗. Consequently, x′∗ is not
an optimal solution of problem (13), (14). This contradiction proves that the value of the criterion
of the problem Zminmax(W (x1, x2)) on the solution corresponding to P (x′∗) will coincide with that
of the problem (13), (14).

2. Let x∗ be the optimal solution to the problem Zminmax(W (x1, x2)). Then we construct the
optimal solution of problems (13), (14) as follows:

x′i =

{
1 if x∗iii = 1

0 otherwise,
i = 1, n.

As is easily verified, the value of the criterion of problem (13), (14) on the solution x′ coincides
with the optimal criterion of the problem Zminmax(W (x1, x2)).

Assume on the contrary that the solution x′ is not optimal in problem (13), (14). Let x′∗ be the
optimal solution of problem (13), (14). Then the value of the criterion of problem (13), (14) on the
solution x′∗ is strictly smaller than that of the problem Zminmax(W (x1, x2)) on the solution x∗. We
construct the solution of the problem Zminmax(W (x1, x2)) using the following algorithm:

Step 1. P (x′∗) = ∅.
Step 2. For each i = 1, n :
if x′∗i = 1, then P (x′∗) = P (x′∗) ∪ {(2i − 1, 2i − 1, 2i − 1), (2i, 2i, 2i)};
otherwise, P (x′∗) = P (x′∗) ∪ {(2i − 1, 2i − 1, 2i), (2i, 2i, 2i − 1)}.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 8 2024
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By the construction procedure, the value of the criterion of the problem Zminmax(W (x1, x2)) on
the solution corresponding to P (x′∗) coincide with that of problem (13), (14) on the solution x′∗.
Therefore, x∗ is not the optimal solution of the problem Zminmax(W (x1, x2)). This contradiction
proves that the value of the criterion of problem (13), (14) on the solution x′ will coincide with the
optimal value of the criterion of the problem Zminmax(W (x1, x2)).

Thus, problem (13), (14) is polynomially reducible to the class of problems Zminmax(W (x1, x2)).
Consequently, the class of problems Zminmax(W (x1, x2)) is NP-hard. The proof of Theorem 2 is
complete.

7. A COMPUTATIONAL EXPERIMENT

Consider the problem Z� for M = 2. By analogy with [12], we construct a test set with three-
index cost matrices whose elements are random integer values with the uniform distribution on the
interval [0, 300]. Let us conduct a series of experiments for fixed values of n, denoting by K the
number of problems in the series. We design two heuristic algorithms for solving the problem Z�.
The first algorithm is based on constructing subsets of feasible solutions and selecting a record
among them; the second one is similar to the first, but the record selection step is replaced by the
sequential combination of solutions using the first algorithm. Note that by Proposition 5, the first
algorithm has a complexity of O(n), which coincides with the complexity of record selection.

The first heuristic algorithm. Construct N = n3 random solutions, and apply the local opti-
mization algorithm [13] to each of them. Denote by x′t, t = 1, N, the resulting feasible solutions
of the problem Z�. Among them, choose the record x∗ : x∗ � x′t, t = 1, N, as the output of the
algorithm.

The second heuristic algorithm. Replace the record selection step of the first heuristic algorithm
with the sequential combination of the pairs of solutions as follows. Let x′′1 be the solution of the
problem Z�(W (x′1, x′2)). Denote by x′′t the solution of the problem Z�(W (x′′t−1, x

′
t+1)), t = 2, N − 1.

Choose x′′N−1 as the output of the algorithm.

Denoting by C1(x) and C2(x) the values of the criteria (5) on the solution x, we will compare
the average deviation of the criteria values under combination (the second heuristic algorithm) and
record choice (the first heuristic algorithm) in the series. The results are presented in Table 1.

Table 1

n K 100%
C1(x∗) − C1(x′′N−1)

C1(x∗)
100%

C2(x∗) − C2(x′′N−1)

C2(x∗)

10 10 3.09% 1.98%

11 10 5.3% −6.23%

12 10 5.31% 6.58%

13 10 2.05% 0.46%

14 10 0% 0%

15 10 1.26% −1.85%

16 10 2.5% 2.14%

17 10 2.74% −4.92%

18 10 3.19% −0.7%

19 10 7.08% 2.3%

Thus, the average deviations over all series are 3.94% and 0.7% for the first and second crite-
ria, respectively. This demonstrates the effectiveness of the combination strategy instead of the
generally accepted record selection strategy.
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The linear convolution case is equivalent to the single-criterion problem with the linear criterion
and was considered in [20, 21], including the results of a computational experiment. The minimax
convolution case is not considered in the computational experiment here: by Theorem 2, the
combination problem with the minimax convolution is NP-hard even when combining two solutions.

8. CONCLUSIONS

Solution algorithms for the NP-hard multicriteria three-index axial assignment problem with
different types of criteria convolutions have been studied. The problem of combining feasible
solutions of this problem as a compromise scheme has been formulated. Solutions can be combined
as a complement to known heuristics or approximate algorithms for post-processing the obtained
approximate solutions of the assignment problem instead of the generally accepted practice of
record selection.

The complexity status of combining solutions has been investigated. It has been shown that, in
the case of the linear or lexicographic convolution, the pairs of solutions can be completely combined
in a time of O(n); the class of combination problems for four or more solutions is NP-hard; the
complexity status of combining three solutions is an open issue. In the minimax convolution case,
the class of combination problems for two or more solutions is NP-hard. For better clarity, the
outcomes of this paper are presented in Table 2.

Table 2

ZL(W (x1, . . . , xr)) Z�(W (x1, . . . , xr)) Zminmax(W (x1, . . . , xr))

r = 2 O(n) O(n)

r = 3 ? ? NP-hard

r � 4 NP-hard NP-hard

In addition, an algorithm for combining solution pairs has been designed in the lexicographic
convolution case. According to the computational experiment, the combination strategy allows
decreasing the deviation from the optimum as compared to the record selection strategy.

Further research will address the open cases of combining three solutions and combining solutions
when constructing Pareto-optimal solutions of the multicriteria assignment problem.
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